

Fig. 9
Fig. 9 shows a sketch of the graph of $y=x^{3}-10 x^{2}+12 x+72$.
(i) Write down $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the equation of the tangent to the curve at the point on the curve where $x=2$.
(iii) Show that the curve crosses the x-axis at $x=-2$. Show also that the curve touches the x-axis at $x=6$.
(iv) Find the area of the finite region bounded by the curve and the x-axis, shown shaded in Fig. 9 .

2 Fig. 10 shows a sketch of the curve $y=x^{2}-4 x+3$. The point A on the curve has x-coordinate 4 . At point B the curve crosses the x-axis.

Fig. 10
(i) Use calculus to find the equation of the normal to the curve at A and show that this normal intersects the x-axis at $\mathrm{C}(16,0)$.
(ii) Find the area of the region ABC bounded by the curve, the normal at A and the x-axis.

3 The point A has x-coordinate 5 and lies on the curve $y=x^{2}-4 x+3$.
(i) Sketch the curve.
(ii) Use calculus to find the equation of the tangent to the curve at A.
(iii) Show that the equation of the normal to the curve at A is $x+6 y=53$. Find also, using an algebraic method, the x-coordinate of the point at which this normal crosses the curve again.

4

Fig. 10

A is the point with coordinates $(1,4)$ on the curve $y=4 x^{2} . \mathrm{B}$ is the point with coordinates $(0,1)$, as shown in Fig. 10.
(i) The line through A and B intersects the curve again at the point C . Show that the coordinates of C are $\left(-\frac{1}{4}, \frac{1}{4}\right)$.
(ii) Use calculus to find the equation of the tangent to the curve at A and verify that the equation of the tangent at C is $y=-2 x-\frac{1}{4}$.
(iii) The two tangents intersect at the point D . Find the y-coordinate of D .

5 Find the equation of the tangent to the curve $y=6 \sqrt{x}$ at the point where $x=16$.

